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Abstract. Denoising video is an important task, especially for videos
captured in dim lighting environments. The filtering of video in a vol-
umetric manner with time as the third dimension can improve the re-
sults significantly. In this work a 3D bilateral filter for edge preserving
smoothing of video sequences exploiting commodity graphics hardware is
presented. A hardware friendly streaming concept has been implemented
to allow the processing of video sequences of arbitrary length. The clear
advantage of time-based filtering compared to frame-by-frame filtering
is presented as well as solutions to current limitations for volume filter-
ing on graphics hardware. In addition, a significant speedup over a CPU
based implementation is shown.
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1 Introduction

Data acquired by any type of analog-digital converter, such as CCD and CMOS
image sensors or sensors in CT/MRI scanners contains noise. In the case of
commodity hardware, this can be observed especially in video sequences or im-
ages captured in dim lighting conditions. As a result, further processing, like
segmentation, is difficult for these datasets.

To enhance the distorted data, filtering is a common first step in the work-
flow. There are three different types of operations that transfer a pixel of a source
dataset or image into the corresponding pixel in the destination dataset: point
operations where the destination pixel depends only on the source pixel; local
operations where the destination pixel is dependent both on the source pixel
and its distinct neighborhood; and finally global operations, where the value of
the destination pixel is influenced by all pixels of the source image. These three
operations can either be linear or nonlinear, where linear filters describe a con-
volution of the source image with a given filter kernel. A typical example is the
Gaussian filter that resembles a linear local operation with a filter mask consist-
ing of weights that have Gaussian distribution. Another example is the median
filter as a nonlinear local operation where the destination pixel’s value becomes
the median of the source pixel and its neighbourhood. In order to enhance the
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distorted data we would like to smoothen the homogeneous regions while main-
taining edges, thus performing an edge preserving smoothing. For reasons to be
shown, we use the well-known bilateral filter [1]. Our target datasets are video
sequences, i.e., a sequence of individual frames. Thus, we have the possibility of
filtering each frame separately with a two-dimensional kernel. Trying to elimi-
nate the noise as much as possible using this bilateral filter usually results in a
comic style [2], however, which is caused by the evenly coloured areas with sharp
edges in the resulting image. By choosing the parameters of the filter in a way
that we get a more natural look, we cannot denoise the data sufficiently.

In our approach we regard the video sequence as a volume and use the bi-
lateral filter in all three dimensions. Areas in the video sequence that are not
changing or moving from one frame to the next are then homogeneous regions in
time. Thus, we can choose the parameters of the bilateral filter in a way that we
limit the influence of each frame and compensate for the lack of denoising with
the now available temporal dimension. We are also able to eliminate the noise
without introducing the comic look, but preserving a more natural appearence
instead.

Representing video sequences as volumes and operations thereon is no new
idea, as shown in [3], or [4], but advanced filtering is rarely used due to its high
computational costs. To perform filtering on reasonably sized video sequences in
an acceptable amount of time, we utilize recent graphic processing units (GPU)
found on commodity hardware. Using the GPU for general purpose computa-
tions (GPGPU) is currently becoming more and more popular, motivated by the
exponential growth of performance, exceeding the already fast progress of CPUs
[5]. This way, we are able to perform high quality volumetric filtering of video
sequences at PAL resolution in realtime.

The paper is organized as follows: In section 2.1 the underlying system used
for data and shader handling and graphics hardware concepts are introduced,
followed by implementation details of the GPU based bilateral filter. Subse-
quently, we explain our approach to filtering video sequences of arbitrary length
(section 2.3), including a discussion of current limitations and workarounds. We
conclude with quality and performance comparisons in section 3 and finally give
an outlook on improvements and filtering in other domains in section 4.

2 Approach

2.1 Basic concepts and setup

Filtering images with custom filter kernels on the GPU has become possible
quite recently with the introduction of programmable parts of the 3D rendering
pipeline. It basically resembles a stream processor when performing general pur-
pose computation in the graphics hardware. Input and output are streams (tex-
tures) on which kernels (shader programs) are performing various, user defineable
operations. Important properties of these operations are data independency and
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data locality, which are both key factors for the high performance of graphics
processors. This means that an output stream depends only on the input stream
data, and no additional data besides the stream itself can be transferred between
kernels. Imposing these programming restrictions, the GPU is able to compute
several kernels in parallel. Although there are some limited exceptions from the
mentioned stream processing concept, not all computation problems can be ef-
ficiently ported to the GPU without changing the algorithm completely.

In our implementation we used the Plexus framework that has been developed
at the University of Koblenz-Landau during a collaborative project. With this
graph-based tool we are able to easily model data flow between various nodes,
called “devices”, representing all kinds of functionality. The type of data flowing
can be of an arbitrary nature, although the devices have to be capable of handling
the appropriate data, of course. Plexus provides some basic functionality to
transfer data between CPU and GPU, along with devices that are able to provide
a stream of images from a video file, webcam, etc. By using this framework we
have been able to adapt our approach quickly to various data sources and use it
in different configurations.

The basic data type for representing 2D image data on the CPU in Plexus
is “Image”. These “Images” can be uploaded to the GPU where they become
a “Texture2D” (for reading) or a “GPUStream” (for reading or writing), which
are roughly equivalent. In addition, for the GPU there are data types like “Tex-
ture3D” and “FlatVolume”, which will be described in more detail in section
2.3. All data types that have been mentioned before can have different numbers
of channels and bit-depths per channel. For filtering video sequences, we used
three channels (RGB) with eight bits each, which is sufficient for common video
material and is also natively supported by a wide range of GPUs.

Concerning the architecture of GPUs, we only use one of currently three user
programmable parts of the graphics pipeline: the fragment processing step. The
vertex and geometry shader (the latter introduced with Shader Model 4.0 [6])
are not used in our approach, as is obvious for pure pixel data such as video
frames. Therefore, we simply use the graphics API to draw a quadrilateral in
size of the input data (i.e., video frame resolution) to initiate data processing. In
our implementation the source video frame is the input data to be processed by
the initial shader, i.e., the first render pass. The one-dimensional bilateral filter is
then applied to this texture resulting in one filtered pixel value, which is written
to the framebuffer (or some equivalent offscreen target). In our application, this
result is used in subsequent processing steps to realize three-dimensional filtering.

2.2 Bilateral filtering on the GPU

As image denoising is a common research topic, various filter types have been
proposed. Among these approaches anisotropic diffusion and wavelet based filters
are well studied and widely used, mainly due to their edge preserving properties.
In the context of GPGPU, however, anisotropic diffusion as an iterative solution
is not well suited for the GPU. Wavelet based filters on the other hand require
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several conversions to the wavelet domain and thus introduce a considerable
overhead.

Barash has shown in [7] that bilateral filtering resembles anisotropic diffu-
sion by using adaptive smoothing as link between the two approaches. Therefore,
we are able to implement bilateral filtering as a more GPU-friendly algorithm
because of its “local operation” nature, while maintaining their common ba-
sis. That is, it is possible to implement the bilateral filter, without significant
changes, as a shader program using the OpenGL Shading Language.

The bilateral filter itself was first introduced in 1998 by C. Tomasi und R.
Manduchi [1]. Its basic idea is to combine the domain and the range of an
image. The domain describes the spatial location or closeness of two pixels,
while the range describes their similarity, or the distance of the pixel values.
In traditional filters only a pixel’s location in the spatial domain is taken into
account, resulting in less influence for more distant pixels, for example. The
bilateral filter additionally takes the similarity into account.

The bilateral filter is defined as:

k (x) =
∫ ∞

−∞

∫ ∞

−∞
c (ξ, x) s (f (ξ) , f (x)) dξ

with the spatial closeness c(ξ, x) between the neighborhood center x and a
nearby point ξ, and the similarity s(f(ξ), f(x)) between x and ξ. The pixel value
at x is therefore a combination of the domain c and the range s.

A simple and important case of the distance function in the domain is the
gaussian weighted euclidean distance:

c (ξ, x) = e
− 1

2

(
d(ξ,x)

σd

)2

with the euclidean distance function:

d (ξ, x) = d (ξ − x) = ‖ξ − x‖

The distance function in the range is defined analog to c:

s (ξ, x) = e−
1
2 ( δ(f(ξ),f(x))

σr
)2

with an appropriate distance measure for the intensity values φ and f :

δ (φ, f) = δ (φ− f) = ‖φ− f‖

In the simplest case, this can be the absolute pixel value. With parameters
σd and σr, the filter result can be influenced. The bilateral filter is inherently
non-linear because of its utilization of the image’s range, and is therefore not
directly separable.

In our implementation, however, we use the separated bilateral filter intro-
duced by Pham et al. [8]. As described in their work, it is not a true separation
of the original bilateral filter, thus leading to approximated rather than equal re-
sults. However, for the purpose of filtering video sequences the introduced error
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is negligible, especially considering the potential increase in performance. In our
approach we convolve the source frame with the separated, two-dimensional bi-
lateral filter, thus applying the one-dimensional kernel twice. The internal video
volume is then built from these filtered slices and finally reused several times
for the convolution in the third dimension. The whole procedure is described in
more detail in the following section.

2.3 Streaming Approach

Filtering video data in a volumetric manner cannot be done directly for sequences
of reasonable lengths as the entire data usually does not fit into the graphics
memory. Therefore, we have implemented a streaming approach to allow for
videos of arbitrary length. When choosing the parameters for the kernel so that
n previous and n subsequent frames are used to filter the current frame, we have
to keep 2n+1 frames in the graphics cards memory at once. In every filtering step
we upload the next video frame to the GPU, which then is processed separately
in x and y direction using the separated bilateral filter. This two-dimensionally
filtered slice is subsequently added to the video volume, thus replacing the oldest
slice in the volume. The last step is to generate the processed video frame by
filtering the video volume in z direction. The final video frame is then displayed
and/or downloaded into the CPUs memory, to be written to a file or processed
further. The whole process is depicted in the figure below:

bilateral filter
in x directionunfiltered

horizontally
convolved

2D 
convolved

bilateral filter
in y direction

bilateral filter
in z directionfiltered

Fig. 1. Processing steps of our separable bilateral filtering approach

To minimize data transfers during copying to and from the GPU, and inside
the GPU’s memory, we use a ring buffer storage scheme for the video volume.
Thus, it is possible to constantly add slices to the volume until the maximum
number of slices is reached.

However, using this approach we encountered a severe limitation especially
on NVIDIA graphics cards: the maximum size of 3D textures being 5123 pixels,
whereas only their most recent hardware (available since November 2006) is
capable of larger 3D textures (20483). With this constraint we were not able to
filter videos with the desired PAL resolution of 720×576 pixels using traditional
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3D textures in our original implementation. To circumvent this limitation we
used a 3D data representation known as “flat volume”, introduced by Harris et
al. [9]. The idea behind this technique is to place every slice of the volume side
by side, resulting in a large 2D texture. This concept is also shown in figure 1,
and exploits the graphics hardware’s support for 2D texture sizes up to 40962

(latest hardware: 81922) pixels. We can then use a simple address translation to
convert a pixel position in 3D (x, y, z) to the according pixel position in the 2D
flat volume (x, y). As an additional benefit of using the “flat volume” we also
measured a significant performance increase as described in section 3.2.

3 Results

3.1 Comparison 3D/2D Filtering

To assess the quality of our filtering – especially the difference between the 2D
and 3D version – we did a full reference comparison. Therefore, we took a video
sequence without noise (our reference sequence) and added synthetic noise to it
by adding an evenly distributed random value between -50 and 50 to the R, G,
and B channel of every pixel independently. This is motivated by the nature of
noise of commodity sensors, especially when used in dim lighting conditions. We
then compared the video sequences with two different measures by performing
a frame-by-frame comparison and averaged the measured error values for the
entire sequence. The first video sequence that has been compared is an outdoor
video sequence captured in daylight without noticeable noise. The second video
is a synthetic animation showing a typical pre-video countdown, combined with
a testbar screen for broadcasting, thus being completely noise free.

The two measures we used are the SSIM (Structural Similarity Index Mea-
sure) introduced by Wang et al. [10] and the MSE (Mean squared error). The
SSIM is a measure specially designed to compare two images in a perception
based manner, whereas the MSE measure is purely mathematically based and
straight forward, but is by its nature not capable of measuring the quality dif-
ference from an observer’s point of view.

After computing an error value for the distorted video sequence in compari-
son to the original sequence, we are able to compare the distorted video sequence
filtered with the 2D and 3D bilateral filter, respectively, with the reference se-
quence. The results can be seen in table 1. By the method’s definition, a value of
1 means completely equal frames with the SSIM: the lower the value, the more
different the compared images are. In contrast, value 0 corresponds to no differ-
ences with the MSE. We also included the results of two commercial products:
“Adobe AfterEffects 7.0” (i.e., “Remove grain” filter) and the relatively new
“Neat Video Pro 1.5”, which are both widely used and designed for this field of
application. The filter methods used by these two programs are not disclosed. A
visual comparison of the results is shown in figure 3.

As can be seen there is no significant difference of the filter quality between
the two very different types of video sequences: both error metrics indicate the
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same relationship. The quality of 3D filtering surpasses the quality of the 2D
filter, but is comparable to the quality of the “Adobe AfterEffects” filter. In
contrast, the visual result of “Neat Video” is better than ours.

outdoor synthetic
SSIM MSE SSIM MSE

unfiltered 0,393 669,6 0,311 626,3

filtered with “2D bilateral filter” (GPU-BF 2D) 0,737 135,0 0,720 125,7

filtered with “3D bilateral filter” (GPU-BF 3D/flat3D) 0,844 87,3 0,890 73,9

filtered with AfterEffects “Remove grain” 0,829 89,7 0,908 68,3

filtered with “Neat Video” 0,909 53,9 0,954 48,1
Table 1. Quality comparison

We also measured the time needed for filtering a single frame. Our application
runs on a commodity Windows PC that features following components: Intel
CoreDuo 6400 (2.13 GHz), 2 GB RAM, NVIDIA GeForce 8800 GTX 768MB
PCIe 16x. The video sequence “outdoor”, used for comparison, has a resolution
of 720× 576 and is 1085 frames long. The denoted time per frame is an average
over all frames of the filtering only, that is excluding the time needed for reading
or writing the video file or uploading the data to the GPU. The results are
given in figure 2. They obviously show that using the GPU for filtering yields a
significant performance improvement, approximately three orders of magnitude
faster than comparable functionality in commercial products.

Sheet2

Page 2

After Effects

Neat Video

CPU-BF (3D)

GPU-BF (flat3D)

GPU-BF (3D)

GPU-BF (2D)

1 10 100 1000 10000  ms

2,2

4,8

3,3

985

770

2563

Fig. 2. Performance comparison (time per frame)

3.2 Performance 3D/flat volume

The processing time for our implementation using the flat volume storage con-
cept has a performance gain of approximately 25% on current hardware with
respect to full 3D volume textures, as can be seen from figure 2. On previous
graphics hardware the difference using the flat volume was even higher, up to a
factor of two. This indicates some trend for improved and complete 3D texture
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processing in graphics hardware, but due to the very new hardware a detailed
evaluation could not be taken into account in this work yet.

By using the flat volume textures, we were also able to filter PAL resolution
video sequences even on older graphics hardware (esp. NVIDIA) in their original
resolution. As the architecture of commodity graphics cards is mainly driven by
the computer games industry, features like true 3D texture functionality have
not yet been optimized to the same level as their 2D counterparts. This can
also be experienced with API functions for 3D texture processing like OpenGL
function calls which have not been hardware accelerated or are not available at
all, until recently, as described before. Therefore, if no advanced texture access
(e.g., trilinear filtering) is needed, flat volume textures are an appropriate al-
ternative to native 3D textures. Despite the additional overhead for the address
translation, they offer a considerable performance increase, especially with older
graphics hardware.

4 Conclusion and Future Work

In this paper we have described that using a 3D bilateral filter for noise reduc-
tion on video sequences results in higher quality than with frame-by-frame 2D
bilateral filtering. In figure 4 we give another real world example with compa-
rable performance results, which depicts a video frame acquired in a very dark
room, lit only indirectly by a projection screen. In addition, we have shown that
using modern commodity graphics hardware clearly decreases processing time
for this rather costly volumetric filter operation. In order to exploit their capa-
bilities even better, we argued that using flat volumes for three-dimensional data
offers advantages in comparison to true 3D textures for a wide range of graphics
hardware.

Based on this application, it is also possible to perform fast filtering of real 3D
datasets, like medical volumes to enhance the results of subsequent processing
steps like segmentation. However, the size of the volume is then directly limited
by the available memory on the graphics card, so that other approaches like
bricking have to be employed.

One natural disadvantage of smoothing is the loss of high frequencies which
can be seen in some regions of the example material. To compensate for this,
we would like to investigate other types of smoothing filters or sequences of
filter operations. Therefore, we are planning to further generalize the concepts
to other kinds of computations amenable to the stream processing nature of
current graphics hardware.

The dramatic decrease in filtering time by using the GPU has been shown
with video data of 8 bit per channel. It would be interesting to see how well our
approach works on data with 16 bit per channel or even other representations,
e.g., true high dynamic range data. As current graphics hardware is heavily
optimized for floating point data, an equally, if not greater performance increase
should be possible.
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Fig. 3. Example “outdoor” for quality comparison

Fig. 4. Real world example in dim lighting conditions with natural noise


